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The ingredients

Let D be the unit disc in the complex plane C. This is just
the inside of the unit circle T. We have functions defined on it
– φα,a(z) = α z−a

1−āz , where a is in D and α is in T.
Each of these is the ratio of two polynomials of degree one. One
can’t ask for anything simpler!
If we go forward from D with one these functions, then we
land in D again. Moreover, we always have a function of the
form φβ,b with which we can return back to the first copy of
the D undoing the effect of φα,a.
We say that each of the φα,a admits an inverse, namely the
function φβ,b. The set of these functions, namely,
{φα,a : α ∈ T, a ∈ D} forms a group G under composition of
functions and is called the Möbius group.
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The Hilbert space of square integrable functions

Consider the space L2
a(D) of all holomorphic functions on D

which are square integrable with respect to the area measure.
This consists of the functions (these are polynomials that refuse
to stop):

{f : f(z) = a0 + a1z + a2z
2 + · · ·+ anz

n + · · · }

with |a0|2 + |a1|2 + 2|a2|2 + · · ·+ (n+ 1)|an|2 + · · · <∞.
The space L2

a(D) of functions defined on D is a Hilbert space.
Let A(D) be the set of holomorphic functions (again,
polynomials that refuse to stop) which are continuous on the
union of the two sets D and T, it is an algebra. We have
described three mathematical objects, namely
the Möbius group G,
the Hilbert space L2

a(D),
and the algebra A(D).
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imprmitivity

Both the group G and the algebra A(D) ”live” on the Hilbert
space L2

a(D). Here is how this works! The action U of the
group G on the Hilbert space L2

a(D) is given by the formula:(
U(φ)h

)
(z) = φ′(z)(h ◦ φ)(z), h ∈ L2

a(D)

while the action ϱ of the algebra A(D) is obtained by a mere
multiplication –(

ϱ(f)h
)
(z) = f(z)h(z), h ∈ L2

a(D)

What is more, U is a (actually, in general, projective) group
homomorphism and ϱ is an algebra homomorphism. These
satisfy the imprimitivity relation (a form of Weyl commutation
relation):

ϱ(φ · f) = U(φ)∗ϱ(f)U(φ), f ∈ A(D), φ ∈ G,

where ϱ(φ · f)(z) = φ(z)f(z).
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Multiplier representations

Let H be a space of functions, say, on the unit disc or the unit
circle. Suppose that the homomorphism ϱ : A(D) → L(H)
defined by the rule ϱ(f) =Mf , f ∈ A(D) is bounded.
Let U : G→ L(H) be of the form U(φ) =MJφRφ, where
MJφ is the multiplication by Jφ and Rφ is the composition
by φ. The map U is a homomorphism if and only if the
multiplier identity

Jφψ(z) = Jφ(ψ(z))Jψ(z), φ, ψ ∈ G

is valid for the function J : G× D → C. In this case U is
said to be a multiplier representation.
If there is a multiplier representation, say U, of the group G
on the Hilbert space H, then the imprimitivity relationship(

MJφRφ
)∗
ϱ(φ · f)(MJφRφ) = ϱ(f), φ ∈ Gf ∈ A(D).

is forced.
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A question

Recall that the multiplier identity for J : G× D → C, where
Jφ is the derivative φ′, is the familiar chain rule.
Let us also emphasize that the map U : G→ O(D) defined by
the rule

(
U(φ)f

)
(z) = Jφ(z)f(φ(z)) is a homomorphism only

if J satisfies the multiplier identity.
Clearly, any power of the derivative J

(λ)
φ := (φ′)λ, λ > 0 will

continue to obey the multiplier identity.
Surprisingly, these are all the possible complex valued
multipliers for the Möbius group.
Given the multiplier J (λ), it is easy to find a Hilbert space
H(λ) such that U and ϱ , defined as before, acts on it
satisfying the imprimitivity condition.
How do we construct multipliers taking values, say, in n× n
matrices?
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A derivation

Assume that we have found a derivation d : G× D → Cn×n
satisfying the multiplier identity, that is,

d(gh, z) = d(g, h(z))d(h, z), g, h ∈ G, z ∈ D.

For 0 < λ ∈ R, define the map Γ : G→ E(O(D,Cn)) by the
rule(

Γ(g−1)f
)
(z) = J (λ)(g, z)d(g, z)f(g(z)), f ∈ O(D,Cn), g ∈ G.

Not only Γ is a homomorphism but any homomorphism must
be of this form. It would be therefore desirable to find all the
possible derivations d.
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the construction

Let D(g, z) be the diagonal matrix whose (ℓ, ℓ) entry is
J (−m+j)(g, z)Idj , d0 + · · ·+ dj < ℓ ≤ dj+1, d0 + · · · dm = n.
Also, the ratio

−1

2

g′′(z)

(g′(z))
3
2

, g ∈ G, z ∈ D

is independent of z, which we denote by bg.
Let Yi : Cdj → Cdj+1 be a set of m linear transformations
and Y be the corresponding shift operator on Cn.
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The proof

Theorem
The multiplier identity holds for the derivation d defined by
the rule:

(g, z) 7→ J (λ)(g, z)D(g, z)
1
2 exp(−bgY )D(g, z)

1
2 , g ∈ G, z ∈ D.

Proof: It is easy to verify that
D(g1g2, z) = D(g1, g2(z))D(g2, z) using the chain rule. Now,

d(g1g2, z) = D(g1g2, z)
1
2 exp(−bg1g2Y )D(g1g2, z)

1
2 .



proof contd.

However, we have

−bg1g2 =
1

2

(g1g2)
′′(z)(

(g1g2)′(z)
)3/2

=
1

2

(
g′1(g2(z))g

′
2(z)

)′(
g′1(g2(z))g

′
2(z)

)3/2
=

1

2

g′′1(g2(z))(g
′
2(z))

2 + g′1(g2(z))g
′′
2(z)(

g′1(g2(z))g
′
2(z)

)3/2
=

1

2
{ g′′1(g2(z))

(g′1(g2(z)))
3/2

g′2(z)
1/2

+
g′′2(z)

(g′2(z))
3/2

(g′1(g2(z)))
−1/2}

= −bg1(g′2(z))1/2 − bg2(g
′
1(g2(z)))

−1/2.



proof contd.
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These commute!
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Inserting an identity...
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Thank you!
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